

ENERGY STAR®

Imaging Equipment Version 3.0 Draft 2 Specification, Draft 3 Imaging Equipment Test Method, and Draft 1 Professional Imaging Equipment Test Method Webinar

July 30, 2018

Webinar Details

- Webinar slides and related materials will be available on the Imaging Equipment Product Development Web page:
 - <u>https://www.energystar.gov/products/spec/imaging_equipment_specification_versi</u> on 3 0 pd
- To use your telephone after joining GoToWebinar:

Call in: +1 (877) 423-6338 (U.S.) +1 (571) 281-2578 (International) Code: 198-920 #

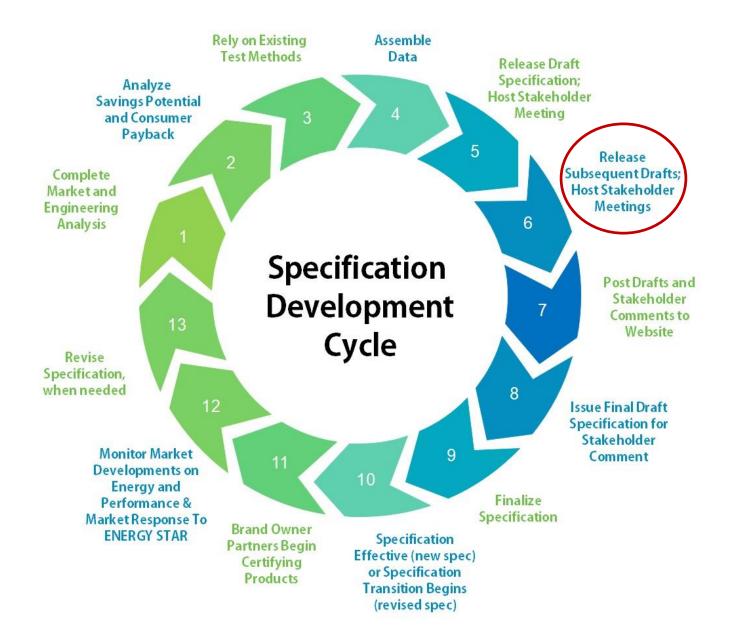
- Phone lines will remain open during discussion
- Please mute line unless speaking
- Please do not put call on hold

Webinar Agenda

- 1. Introductions and ENERGY STAR Process
- 2. Draft 2, Version 3.0 Specification
- 3. Draft 3 Imaging Equipment Test Method
- 4. Draft 1 Professional Imaging Equipment Test Method
- 5. Timeline and Open Discussion

Introductions

Time	Торіс	
1:00–1:15	Introductions and Specification Development	
	Recap	
1:15–2:15	Draft 2 Specification	
2:15–2:30	Draft 3 Imaging Equipment Test Method	
2:30–2:45	Draft 1 Professional Imaging Equipment Test Method	
2:45–3:00	Timeline and Open Discussion	


Introductions

Ryan Fogle U.S. Environmental Protection Agency

Jeremy Dommu

U.S. Department of Energy

Matt Malinowski ICF Zenia Montero ICF John Clinger ICF

Milestones to Date

Milestone	Date	
Specification Launch and Discussion Document	February 22, 2017	
Launch Webinar	March 1, 2017	
Draft 1 Test Method	August 14, 2017	
Draft 2 Test Method and Draft 1 Specification	March 16, 2018	
Draft 2 Specification, Draft 3 Test Method, and Draft 1 Professional Imaging Equipment Test Method	July 23, 2018	
Draft 2 Specification, Draft 3 Test Method, and Draft 1 Professional Imaging Equipment Test Method Webinar	Today, July 30, 2018	

Time	Торіс
1:00–1:15	Introductions and Specification Development
	Recap
1:15–2:15	Draft 2 Specification
2:15–2:30	Draft 3 Imaging Equipment Test Method
2:30–2:45	Draft 1 Professional Imaging Equipment Test
	Method
2:45–3:00	Timeline and Open Discussion

Introduction

- General Requirements
- Professional Products
- TEC Products
- OM Products

ENERGY STAR. The simple choice for energy efficiency.

General Requirements

Summary of Feedback – DFEs

- Lower energy requirements for Type 1, Category B DFEs will lead to use of lower-compute-performance DFEs
 - Will not keep up with the engine of Imaging Equipment and increase total system energy usage
- Add a third category for high performance systems based on server processors

Proposal – DFEs

- Higher-speed DFEs necessary to support Professional Imaging Equipment
 New definition for Professional DFEs based on ENERGY STAR server definition:
- d) Professional Digital Front-end (DFE): A DFE which meets all of the following criteria:
 - i. Is sold with a product defined above as a Professional Imaging Product;
 - ii. has processor performance per socket² equal to or greater than 20;
 - iii. provides support for error-correcting code (ECC) and/or buffered memory (including both buffered dual in-line memory modules (DIMMs) and buffered on board (BOB) configurations).
 - iv. is packaged and sold with one or more ac-dc or dc-dc power supplies; and
 - v. is designed such that all processors have access to shared system memory.

Proposal – DFEs

Only a reporting requirement for professional DFEs due to limited data at present
Requirements for remaining DFE types reverted to kWh/week:

		Maximum TEC _{DFE} (kWh/week)	
DFE Category	Category Description	Type 1 DFE	Type 2 DFE
A	All DFEs that do not meet the definition of Category B will be considered under Category A for ENERGY STAR certification.	7	3
B To qualify under Category B DFEs must have: 2 or more physical CPUs or 1 CPU and ≥ 1 discrete Auxiliary Processing Accelerators (APAs)		12	3

Table 2: Maximum TECDFE Requirements for Type 1 and Type 2 DFEs

ENERGY STAR. The simple choice for energy efficiency.

Professional Imaging Product Requirements

Summary of Feedback – Professional Imaging Products: Definition

- Need to be able to clearly differentiate from office equipment
- Require weight greater than either 180 or 200 kg
- Clarify that the monochrome product speed requirement shall not apply to color products

Proposal – Professional Imaging Products

- Adopted the additional weight requirement at 180 kg
- Clarified the speed criteria:
 - c) If product is monochrome, monochrome product speed equal to or greater than 86 ipm;

d) If product is color, color product speed equal to or greater than 50 ipm;

- No separate requirements for Professional Imaging Products
 - Continue to treat as TEC products;
 - Separate requirements referencing Professional Test Procedure to be included in Version 3.1

ENERGY STAR. The simple choice for energy efficiency.

TEC Product Requirements

Summary of Feedback – TEC Requirement: Dataset

- Do not exclude older V2.0 models if still on the market
- Include non-certified products
- Do not exclude models that have the same print speed, TEC, and other data as other models
- Remove duplicates
- Manufacturers provided supplemental industry data

Proposal – TEC Requirement: Dataset

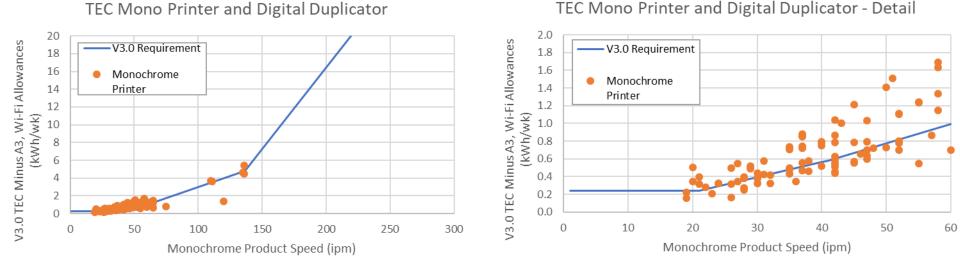
- Revised the dataset to include the latest ENERGY STAR certified model data, across all years
- Removed models that were:
 - OM, or TEC copiers and fax machines
 - Sold Only Outside the United States
 - With document less than standard (210 mm)
 - With no color information

Proposal – TEC Requirement: Dataset (continued)

Removed multiple entries for product family models

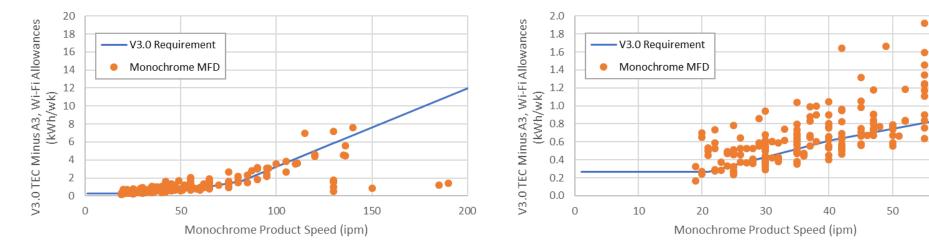
- Members of the same product family based on Product Type, Speed, Color, Size, and TEC Test Procedure Measurements (i.e., not just the final TEC result)
- Some Brand Owners qualify product family models separately while others do so under one parent model
- EPA also coordinated with 13 manufacturers, who reviewed the dataset and provided some corrections:
 - Removed models no longer being sold
 - Made corrections to the data
 - Added non-certified models

Proposal – TEC Requirement


Table 6: TEC Requirement

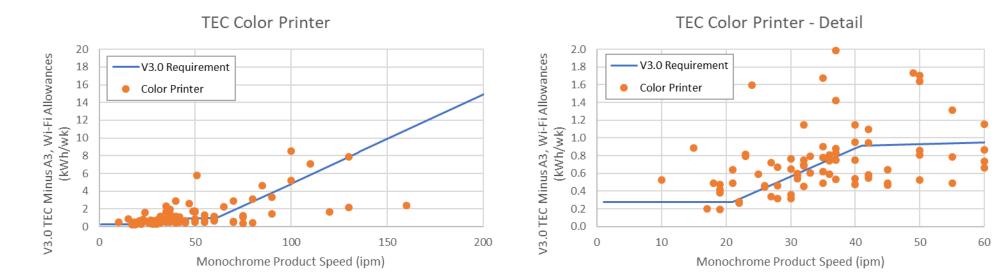
Color Capability	Monochrome Product Speed, s, as Calculated in the Test Method (ipm)	TEC _{REQ} (kWh/wk, to the nearest 0.01 kWh/wk for reporting)
Monochrome Non-MFD	s ≤ 20	0.242
	20 < s ≤ 40	0.017 × s – 0.115
	40 < s ≤ 60	$0.022 \times s - 0.320$
	60 < s ≤ 135	0.050 × s - 2.028
	s > 135	0.183 × s - 20.116
	s ≤ 20	0.263
	20 < s ≤ 40	0.018 × s - 0.115
Monochrome MFD	40 < s ≤ 60	0.013 × s + 0.090
WIFD	60 < s ≤ 80	0.036 × s – 1.313
	s > 80	0.087 × s – 5.444
	s ≤ 20	0.275
Color	20 < s ≤ 40	0.032 × s – 0.397
Non-MFD	40 < s ≤ 60	0.002 × s + 0.833
	s > 60	0.100 × s - 5.145
	s ≤ 20	0.254
Calar	20 < s ≤ 40	0.021 × s – 0.187
Color	$40 < s \le 60$	0.013 × s + 0. 141
	60 < s ≤ 80	0.056 × s – 2.482
	s > 80	0.167 × s – 11.473

Monochrome Non-MFD

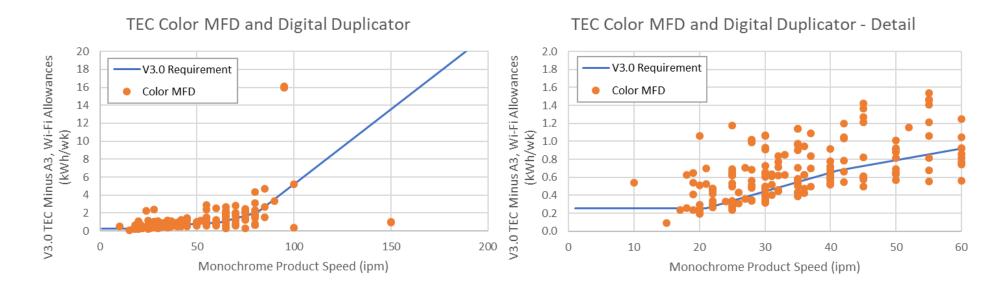


TEC Mono Printer and Digital Duplicator - Detail

Monochrome MFD


TEC Mono MFD and Digital Duplicator TEC Mono MFD and Digital Duplicator - Detail

60


Color Non-MFD

SEPA CEPARTMENT OF

Color MFD

Summary of Feedback and Proposal – TEC Reporting

Revert reporting TEC to a weekly basis (kWh/week), not kWh/year

- Reverted the measure to kWh/week
 - Avoid customer confusion
 - Enable historical comparisons
- Proposed to continue showing both kWh/week and kWh/year on the ENERGY STAR Product Finder and Public Dataset

Summary of Feedback and Proposal– TEC Requirement: A3 Adder

- A3 models require more power than A4 due to device configuration
- Maintain the current A3 adder

Following updates to the dataset, there was a difference in pass rates between A3 and A4 models
0.05 kWh/week adder balanced the pass rate

Summary of Feedback and Proposal– TEC Requirement: Wi-Fi Adder

 Since Wi-Fi uses more power than USB, ENERGY STAR should include a Wi-Fi adder for TEC products

- Updated dataset included only 20 TEC models with Wi-Fi
 - Additional models expected in the future
 - Models with Wi-Fi and USB (tested with Wi-Fi disconnected under the current test method) had higher pass rate than models with Wi-Fi and no USB (tested with Wi-Fi connected)
- 0.1 kWh/wk allowance (~0.6 W) balanced pass rates
 - Within the range of Wi-Fi allowances in other ENERGY STAR specifications

Proposal – TEC Requirement

Equation 6: Maximum TEC Requirement Calculation

$$TEC_{MAX} = TEC_{REQ} + Adder_{A3} + Adder_{Wi-Fi}$$
,

Where:

- *TEC_{MAX} is the maximum TEC requirement in kilowatt-hours per week (kWh/wk), rounded to the nearest 0.1 kWh/wk for reporting;*
- TEC_{REQ} is the TEC requirement specified in Table 5, in kWh;
- Adder_{A3} is a 0.05 kWh/wk allowance provided for A3-capable products; and
- Adderwi-Fi is a 0.1 kWh/wk allowance provided for products where Wi-Fi is the interface functional adder used during the test.

Summary of Feedback – TEC Requirement: Duplexing

Remove duplexing requirement at lower speeds (color at 16-20 images per minute (ipm) and mono at 11-25 ipm):

- Not harmonized with Blue Angel
- Half of affected products do not meet
- Customers do not need automatic duplexing
- Low-end, low-speed TEC products have low print volumes

 Limits the amount of energy to be saved with duplexing
- Request for analysis/methodology

TEC Requirement: Duplexing

- EPA's original analysis found significant unit savings of embedded energy due to Draft 1 requirements
- However, only five color and 15 monochrome models would be affected, reducing the total savings
 - For about half of these models that EPA reviewed, limited duplex options available or the upgrade would incur significant cost.

Proposal – TEC Requirement: Duplexing

- Keep current speed bins
- Require duplexing by default (harmonized with Blue Angel)
- Eliminate duplexing through optional accessory at intermediate speed bins (19<s<35 ipm color; 24<s<37 ipm monochrome (not used by many products)

<u>Automatic Duplexing Capability</u>: For all MFDs and printers subject to the TEC test method, automatic duplexing capability shall be integral to the base product and enabled by default for products with speed equal to or greater than those specified in Table 5. Printers whose intended function is to print on special single-sided media for the purpose of single sided printing (e.g., release coated paper for labels, direct thermal media, etc.) are exempt from this requirement.

Product Type	Product Speed (ipm)	
Color	> 19	
Monochrome	>24	

Table 5: Automatic Duplexing Requirements for all TEC MFDs and Printers

Summary of Feedback and Proposal – Recovery Time

- Remove recovery time requirement:
 - New test would be burdensome
 - Print speed difference between letter and A4 makes the requirement more stringent than Blue Angel
 - Requirement would require new technologies to meet

- EPA continues to propose recovery time requirement:
 - Already measured as part of TEC test
 - Little difference in results between A4 and letter tests
 - 75% of currently certified unique TEC models can meet

Summary of Feedback and Proposal – Recovery Time Equation

 The time subtracted from t_{Active1} should be be t_{Active0}, not t_{Active2}.

 The quantity tActive0 is measured immediately after the TEC model is placed in Ready State, so it is a more reliable measure of response time from that State.

Equation 7: Recovery Time

 $t_R = t_{Active1} - t_{Active0},$

ENERGY STAR. The simple choice for energy efficiency.

OM Product Requirements

Proposal – OM Adders

- No feedback on Cordless Handset and Internal Disk Drive OM adders, but no longer seem necessary
- Propose removing them from Table 9: Sleep Mode Power Allowances

Discussion

- EPA appreciates any feedback and relevant data on these topics:
 - General Requirements (DFEs and Professional Products)
 - TEC Product Requirements
 - OM Product Requirements

Introductions

Time	Торіс
	Introductions and Specification Development
	Recap
1:15–2:15	Draft 2 Specification
2:15–2:30	Draft 3 Imaging Equipment Test Method
2:30–2:45	Draft 1 Professional Imaging Equipment Test
	Method
2:45–3:00	Timeline and Open Discussion

Introduction

- Measurement Uncertainty
- Paper Size and Taiwan Market
- Network Connection: USB
- TEC Test Procedure Measurement of Active Times in Seconds

Proposal – Measurement Uncertainty

Relax uncertainty requirement to 0.02 W between 0.5 and 1 W Consistent with IEC 62301 Ed. 2

G) Measurement Uncertainty1:

- Measurements of greater than or equal to 1 W shall have an uncertainty of 2% or better at the 95% confidence level.
- 2) Measurements of less than 1 W shall have an uncertainty of 0.02 W or better at the 95% confidence level.

Summary of Feedback – Paper Size and Taiwan Market

- Remove the separate paper requirement for Taiwan, to avoid a separate test in addition to US
- Include letter-size/75g/m² paper, which is used in Taiwan government offices

Proposal – Paper Size and Taiwan Market

• Test with either A4/70 g/m² or $8.5'' \times 11''/75$ g/m² paper

 Will allow manufacturers to use the same conditions as in North America for models sold in both Taiwan and North America, while allowing others with models specific to Taiwan to test them with more typical paper

Market	Paper Size	Basis Weight (g/m ²)
North America	8.5" × 11"	75
Taiwan	A4	70
Taiwali	8.5" × 11"	75
Europe / Australia / New Zealand	A4	80
Japan	A4	64

Table 4: Paper Size and Weight Requirements

Proposal – Network Connections: USB

- Added clarification to ensure that products are tested in a repeatable fashion
 - The speed of the USB port has been found to impact power draw
- D) <u>Network Connections</u>: Products that are capable of being network-connected as-shipped shall be connected to a network.
 - 1) Products shall be connected to only one network or data connection for the duration of the test.
 - a) Only one computer may be connected to the UUT, either directly or via a network.
 - b) The UUT shall be connected using a port with the full specifications recommended for the UUT (e.g., Universal Serial Bus (USB) 3.1 if applicable, even if backwards-compatible with USB 2.0).

Summary of Feedback – Measurement of Active Times

 Active Times in the TEC Test Procedures should be in seconds, not in minutes

Proposal – Measurement of Active Times

- Require measurement of Active0, Active1, and Active2 times in the TEC test methods in Table 8 and Table 9 in seconds
- The time is typically shorter than 1 minute and is furthermore displayed in seconds in the ENERGY STAR public dataset.

Step	Initial State	Action	Record (at end of step)	Unit of Measure	Possible States Measured
		Connect the UUT to the meter. Ensure the unit is powered and in Off Mode.	Off energy	Watt-hours (Wh)	
1 Off		Zero the meter; measure energy over 5 minutes or more. Record both energy and time.	Testing Interval time	Minutes (min)	Off
2	Off	Turn on unit. Wait until unit indicates it is in Ready Mode.	-	-	-
3	Ready	Print a job of at least one output image but no more than a single job per Table 11. Measure and record time to first sheet exiting unit.	Active0 time	Seconds (s)	-

Table 8: TEC Test Procedure for Printers, Digital Duplicators with Print Capability, and MFDs with Print Capability

Discussion

- EPA appreciates any feedback and relevant data on these topics:
 - USB
 - Paper Size and Taiwan Market
 - TEC Test Procedure Measurement of Active Times in Seconds

Introductions

Time	Торіс
1:00–1:15	Introductions and Specification Development
	Recap
1:15–2:15	Draft 2 Specification
2:15–2:30	Draft 3 Imaging Equipment Test Method
2:30-2:45	Draft 1 Professional Imaging Equipment Test
	Method
2:45–3:00	Timeline and Open Discussion

Introduction

- Separate Test Method
- Departures from ISO 21632
- References to Section 4.5.4 of ISO 21632

Summary of Feedback and Proposal – **Separate Test Method**

- Place Professional Imaging Products test method in one discrete section of the specification
- Will "allow accredited labs to limit the scope of their accreditation to exclude **Professional Product testing**"

 Reached out to one CB Drafted a separate test method for Professional Imaging Products to help ease laboratory accreditation

	ENERG Product S
Vergy Star	T Professi
OVERVIEW	

GY STAR[®] Program Requirements Specification for Imaging Equipment

lest Method for Determining ional Imaging Product Energy Use Draft 1, Rev. July-2018

1	OVERVIEW

- The following test method shall be used for determining Professional Imaging Product compliance with requirements in the ENERGY STAR Eligibility Criteria for Imaging Equipment.
- Note: One stakeholder requested that the Professional Imaging Products test method be placed in one
- discrete section of the specification as it will "better allow accredited labs to limit the scope of their accreditation to exclude Professional Product testing if such products are not tested in the lab." EPA has
- drafted the Test Method for Determining Professional Imaging Product Energy Use to help ease laboratory accreditation. EPA welcomes feedback on this proposal.

2 APPLICABILITY

ENERGY STAR test requirements are dependent upon the feature set of the products under evaluation Table 1 shall be used to determine the applicability of this ENERGY STAR Test Method.

Table 1. Test Procedure Applicability

Product Type	Media Format	Marking Technology	ENERGY STAR Evaluation Method
Professional Imaging Products	All	All	Professional Imaging Product

14 3 DEFINITIONS

Unless otherwise specified, all terms used in this document are consistent with the definitions in the ENERGY STAR Eligibility Criteria for Imaging Equipment.

17 4 TEST SETUP

- 18 4.1 General Test Setup
- A) Test Setup and Instrumentation: Test setup and instrumentation for all portions of this procedure shall
- 1) The requirements of International Organization for Standardization (ISO) Standard 21632.
- "Graphic technology Determination of the energy consumption of digital printing devices including transitional and related modes", Section 4, "General Conditions"; and
- 2) In the event of conflicting requirements, the ENERGY STAR test method shall take precede

ENERGY STAR Program Requirements for Imaging Equipment – Test Method for Professional Imaging Products (Rev. July-2018)

Summary of Feedback – Departures from ISO 21632

- Test Professional Imaging Products with default settings, and other conditions from ENERGY STAR test method rather than ISO 21632
- Single-phase Professional Imaging Products are more similar to TEC products (ENERGY STAR) than three-phase products (ISO 21632)

Proposal – Departures from ISO 21632

Торіс	ISO 21632	Proposed Departure
Pre-Test UUT Configuration for Professional Imaging Products	 Two required machine combinations, best-quality (BQ) and best productivity (BP) (Section 4.1) 	One BQ/BP test
Color	 BQ Combination: All colorants of the system shall be used (Section 4.1) 	 Tested under the default (as- shipped) setting with four colors
Product Speed	 Production print (BP) - The printing mode selected by the manufacturer or user of the UUT for use when acceptable print quality is required at high speed. 	 Highest speed as claimed by the manufacturer per the criteria in V3.0 Draft Section 4.1(K)

Proposal – Departures from ISO 21632

Торіс	ISO 21632	Proposed Departure
Ambient Temperature and Relative Humidity	 Ambient Temperature: 20 °C - 25 °C Relative Humidity: 45% - 60 % (Section 4.1) 	 Ambient Temperature: 23°C ± 5°C Relative Humidity: 10% - 80%
Paper Specification	 BQ Combination: Substrate selected for achieving the best possible saleable print quality (Section 4.1) 	 One Test A4 or 8.5" x 11" (depending on market) 127.9g/m², 85lb, or equivalent
Service/Maintenance Modes	 The energy (kWh) consumed for each operation shall be measured and reported. The frequency with which each maintenance operation is required to be performed and recorded. (Section 4.3.3.1) 	 Tested with default settings Without disabling the automatic adjustment function of color or registration (if it is incorporated in the default setting) Manual processes excluded to ensure repeatability

Summary of Feedback – References to Section 4.5.4 of ISO 21632

- The proposed test method for Professional Imaging Products should be as specified in Section 4.5.4 (Combined Test Flow) of ISO 21632.
 - The test method should include Job 1 energy and the average of Jobs 2 and 3, along with Off Mode and Sleep Mode.
- A streamlined test procedure
- Keep the main provisions of ISO 21632
 - e.g., skip test print, sleep, 5% consistency check between jobs, etc.

Proposal – References to Section 4.5.4 of ISO 21632

- Reference <u>Section 4.5.4</u> of ISO 21632, which in turn references specific preceding sections of the standard
- No longer reference Section 4.4 Measuring Conditions (covered by test setup instructions based on ENERGY STAR)

Timeline and Open Discussion

Time	Торіс
1:00–1:15	Introductions and Specification Development Recap
1:15–2:15	Draft 2 Specification
2:15–2:30	Draft 3 Imaging Equipment Test Method
2:30–2:45	Draft 1 Professional Imaging Equipment Test Method
2:45-3:00	Timeline and Open Discussion

Timeline

- •Q4 2018: Final Version 3.0 Test Methods and Specification
 - Subsequent V3.1 with separate requirements for Professional Imaging Products
- •Q3 2019: Version 3.0 specification effective

Final Questions or Comments

Written Comment Submission

Please send any data and written feedback on the drafts to <u>imagingequipment@energystar.gov</u> no later than **August 23, 2018.**

Unless marked as confidential, comments will be posted on the Imaging Equipment Version 3.0 product development page at https://www.energystar.gov/products/spec/imaging_equipment_specification_version_3_0_pd.

Also accessible through <u>www.energystar.gov/revisedspecs</u>.

Thank You!

Ryan Fogle EPA, ENERGY STAR (202) 343-9153 Fogle.Ryan@epa.gov Jeremy Dommu DOE (202) 586-9870 Jeremy.Dommu@ee.doe.gov

Matt Malinowski ICF (202) 862-2693 Matt.Malinowski@icf.com

