

HVAC Design for Installation

ENERGY STAR Products Partner Meeting

October 29th, 2020

Today's Panel

Abigail Daken U.S. Environmental Protection Agency

Jon Winkler

National Renewable Energy Laboratory

Dean Gamble

U.S. Environmental Protection Agency

Christopher Dymond

Northwest Energy Efficiency Alliance

Dave Winningham

Lennox

Background on Installation in ENERGY STAR

- Stakeholder discussions indicated that at some point, investment in quality installation is a more cost-effective path to energy savings than raising criteria
- The Central Air Conditioner and Heat Pump (CAC/HP) Version 6.0 Specification introduced Installation Criteria
- Proper installation affects CACs and heat pumps, but furnaces and other product categories as well

Goals of Installation Criteria

By recognizing equipment capabilities that give contractors feedback:

- Programs can incentivize excellent installation
- Consumers remain confident in high efficiency units; good for manufacturers as well
- Proper installation ensures predicted energy savings are realized

Installation Capabilities

To certify as ENERGY STAR, CAC/HPs (with their controllers) must provide at least three of the following capabilities to aid in quality installation:

- a. Refrigerant charge
- b. Airflow measurement or ESP
- c. Blower fan power draw

- ACCA/RESNET 310
- d. Test mode lock in highest fan speed and compressor capacity
- e. Automatic system discovery
- f. Preprogrammed system tests

Different Efforts Target Different Circumstances

	New Homes	Existing Homes
Existing equipment		NREL research
New equipment, standard	ACCA /DESNIET 210	Droducto
New high-efficiency equipment	ENERGY	STAR V6

Ultimately, we want it all

- In the end, we want to get as much of these savings as possible
- Jon Winkler will help quantify how much that is
- Dean Gamble will discuss ACCA/ANSI 310 and how it will fit in with programs to change practices
- Christopher Dymond will discuss program models that can work with equipment capability to start changing practices, and results
- Dave Winningham from Lennox will discuss what installation capabilities are on the market now

Contact Information

Abigail Daken

Daken.Abigail@epa.gov

202-343-9375

For more information on the CAC-HP Version 6.0 specification, visit the <u>ENERGY STAR CAC-HP Product Development Page</u>.

Residential Installation Quality and Fault Detection

How much energy are we wasting? And how much can be saved?

Jon Winkler Saptarshi Das Lieko Earle Lena Burkett Joe Robertson David Roberts Chuck Booten Jeff Munk (ORNL)

October 29, 2020

Project Overview

Problem Statement

- Over 65% of residential HVAC systems have suboptimal performance resulting in 20-30% increased energy consumption.^{1,2,3}
- National energy impact of installation faults is challenging to estimate due to variations in fault intensity, building construction and location, equipment efficiency, etc.

Research Questions

- How much energy is wasted due to installation faults in central air conditioner and air-source heat pump systems?
- How much energy can be realistically saved by implementing fault detection and diagnostics?

[1] DOE, Residential HVAC Installation Practices: A Review of Research Findings. 2018.

[2] Domanski, P.A., H.I. Henderson, and W.V. Payne, Sensitivity analysis of installation faults on heat pump performance. 2014.

[3] Lstiburek, J. and B. Petit, Final Report on the Expert Meeting for Diagnostic and Performance Feedback for Residential Space Conditioning System Equipment. 2010

Some Caveats...

- We only looked at single-stage central air conditioners and air-source heat pumps.
- We only looked at indoor airflow rate and refrigerant charge installation faults.
- We only looked at single-family homes.

Outline

- Our Approach
- How much energy is wasted from installation faults?
- How much energy can be practically saved using fault detection?

For more details, see the following.

Winkler, J., et al. "Impact of installation faults in air conditioners and heat pumps in single-family homes on US energy usage." *Applied Energy* 278 (2020).

Our Approach

4

6000 probability distributions for 100 parameters structured in a dependency tree 10,000s to 100,000s of simulations

High-performance computing

NREL's supercomputer

Cloud computing

Big data technology stack

Approach Overview

Fault Intensity Data

- 8 studies (1995-2008)
- 354 data points
- Data lacked design airflow rate
- Raw data wasn't always available

Refrigerant Charge Fault Prevalence

- 2 studies (1996, 2002)
- 416 data points
- Most studies present qualitative results

How much are we wasting?

Total Energy Impact

Solving indoor airflow and refrigerant charge faults could save as much or more than common existing programs.

Energy Efficiency Measure	Electricity Savings (TWh/y)
Smart thermostat (not home during day)	13.7
R-38 attic insulation	17.3
Duct sealing and insulation	18.4
Indoor airflow rate and refrigerant charge	20.7
R-49 attic insulation	21.4
Upgrade air-source heat pump to variable-speed heat pump	21.7
SEER 16 central air conditioner	22.6

Adapted from Wilson, E., Christensen, C., Horowitz, S., Robertson, J., and Maguire, J. 2017. *Energy Efficiency Potential in the US Single-Family Housing Stock*. National Renewable Energy Laboratory, Golden, CO, 2017.

Air Source Heat Pumps

Air-source heat pumps are responsible for a disproportionate fraction of the energy waste.

How much can we save?

Approach Overview

Performance vs. Prescriptive FDD

<u>Performance-based</u> – Detects and alerts users regarding performance degradation due to any combination of faults

- Magnitude of COP degradation ≠ magnitude of utility cost increase
- Requires comparing measured performance to the no-fault performance
 - ~10% capacity/COP reduction would be detectable using refrigerantside sensors

Prescriptive-based – Detect and alerts users regarding specific fault types and level

- Fault impacts vary for different equipment and system types
- Airflow fault detection feasibility ~±5%
- Charge fault detection feasibility ~±6°F subcooling

Performance-Based FDD Savings

Addressing indoor airflow and refrigerant charge faults with a COP impact ≥ 10% would save ~67% of the energy wasted.

Utility cost increase is dependent on the fault intensity, house construction, climate, etc.

Calculate the average utility savings potential at a range of FDD COP thresholds.

Prescriptive-Based FDD Savings

Refrigerant Charge Faults \$100 (KWh/house/year) (KWh/house/year) \$90 Avg. Utility Cost Savings (\$/house/year) \$80 \$70 \$60 400 sources \$50 \$40 Electricity \$30 \$20 100 Avg. \$10 \$0 0% 10% 20% 30% 40% 50% FDD Fault Threshold (%)

--- Air Conditioners --- Heat Pumps --- Both System Types

Low Indoor Airflow Faults

Cost Impacts

		Annual		OEM Hardw	Payback		
Fault Type	<u>Feasible</u> <u>Fault</u> <u>Level</u>	<u>Utility</u> <u>Savings</u> (\$/house/y)	<u>Sensors</u>	<u>Controls</u>	Indoor Blower	<u>Total</u>	<u>(100%</u> <u>Markup)</u> (years)
Refrigerant Charge/ Subcooling	±3°F	AC ≈ 15 HP ≈ 45	~\$16	~\$10 - \$100		\$26- \$116	AC: ~3-15 HP: ~1-5
Indoor Airflow	±5%	AC ≈ 22 HP ≈ 90		~\$10 - \$100	\$50	\$60- \$150	AC: ~5-14 HP: ~1-3
Capacity (Refrigerant-Side)	-10%	AC ≳ 30 HP ≳ 120	~\$36	~\$10 - \$100		\$46- \$136	AC: ~3-10 HP: ~1-2
Efficiency (Refrigerant-Side)	-10%						

Conclusions

- 20.7 TWh/y (0.07 Quads) of site energy waste
 - ~9% increase over baseline (no-fault) usage
 - \$2.5 billion in utility cost
- Air-source heat pumps are responsible for a disproportionate fraction of the energy waste
 - 14% of homes \rightarrow 39% of the energy waste
- Performance-based FDD could reduce overall energy waste by 67%
 - A 10% degradation in COP due to installation-related faults is likely a feasible and cost-effective target for performance-based FDD

Thanks!

Jon Winkler Senior Research Engineer National Renewable Energy Laboratory Email: jon.winkler@nrel.gov

Dean Gamble

HVAC installation defects are common

- Improper airflow in nearly 50% of systems:
 - Average airflow ~20% below target. Blasnik et al. (1995)
 - Average airflow 14% below design. Proctor (1997)
 - Measured airflow ranging from 130 510 CFM / ton. Parker (1997)
 - o 70% of units had airflow < 350 CFM / ton. Neme et al. (1999)
 - o Improper airflow in 44% of systems. Mowris et al. (2004)
- Incorrect refrigerant charge in 60-80% of systems:
 - o In 57% of systems. Downey/Proctor (2002)
 - o In 62% of systems. Proctor (2004)
 - o In 72% of systems. Mowris et al. (2004)
 - o In 82% of systems. Proctor (1997)

HVAC installation defects are common

	1817 in a ch-soir-so	Existing	0			Airflow	Energy		1	-	10. 10.1.10.1.1.1.1.1.1.1.1.1.1.1.1.1.1.]				
Study Author	State	Of New Home?	Sample	Average	Airflow	w/in 10%	Savings	Matea									
orady realist	outo	riomer	0126	AILOW	<300 GIII	or 400/ton	Potential	Notes					-				
Blasnik et al. 1995a Blasnik et al. 1995a	NV .	New	30	345	50%		8%	Est @ 33% co	mbined charge/air flow	correcti	on benefi	s					
Diasnik et al. 19900	47	New	10	319	90%												
Hammadund et al. 1990	CA	New	40	344	64%	29%	10%	Est @ 33% co	mbined charge/air flow of	correcti	on benefi	s					
Hammarlund et al. 1992	CA CA	New	12		700	30%	10%	Single family	esults								
Nome et al. 1992	MD	New	00	240	76%	14%	12%	Multi-family re	sults								
Palaci et al. 1997	MD	New	25	340				Average for n	on-participant homes								
Palarii et al. 1992 Darker et al. 1007	n.a.	n.a.	n.a.	070	0001		4%	Lab test of EE	R degradation at 25% re	duction	n in air flo	w					
Prostor & Dorolok 1002	PL OA	Both	21	270	89%	7%	10%	Field measure	mts of flow; lab test of e	ffic loss	5 .						
Proctor & Pernick 1992	GA	Existing	175		44%	0.001		Random same	ble from PG&E Model Fr	iernv C	ommuniti	es Pron	1				
Proctor 1991	CA	Existing	15		0.004	33%		Two-thirds I		-							
Proctor et al. 1995a	UA	Existing	30	300	80%	11%		SCE Coach			Existing		Charge			Eneigy	
Rounguez et al. 1995	n.a.	n.a.	n.a.				2%	Lab test of	1		or New	Sample	correct to	% over	% under	Savings	
Rodinguez et al. 1995	n.a.	n.a.	n.a.				10%	Lab test of (Study Author	State	Homes?	Size	mfg spec	charge	charge	Potential	Notes
VEIC/PEG 1997	NJ	New	52	372		30%	7%	Est @ 33%	24 B		· .						11010
A							1		Blasnik et al. 1995a	NV	New	30	35%	5%	59%	17%	Fet @ 67% combined abaraelak flaw secondlar basedlar
Average				327	70%	22%	8%		Blasnik et al. 1995b	CA	New	10		0.10	00 10	89.	Est @ 67% combined chargerair now correction benefits
									Blasnik et al. 1996	47	New	22	199/	400	700/	074	Est @ 07% combined charge/air flow correction benefits
									Forzad & O'Niesi 1003	- DE	NUW	~~	10 %	470	10%	21%	Est @ 67% combined charge/air flow correction benefits
									Farred & Official 1993	n.a.	n.a.	n.a.				5%	Lab test of TXV; 8% loss @20% overchg; 2% loss @20% underchg
									Farzad & O'Neal 1993	n.a.	n.a.	n.a.				17%	Lab test of Onifice; 13% loss @20% overcho; 21% loss @ 20% undercho
									Hammarlund et al. 1992	CA	New	12				12%	Single family results
									Hammarlund et al. 1992	CA	New	66	31%	61%	8%	12%	Multi-family results
									Katz 1997	NC/SC	New	22	14%	64%	23%		Charne meneured in 22 sustame in 12 homes
									Proctor & Perpick 1992	CA	Existing	175	44%	3396	239/		Desuite from DOSE Model Ensure Comments
									Proctor 1991	CA	Existing	15	44%	99.19	60.0		Fiscal bond PG&E Model Energy Communities Program
									Proctor et al. 1995a	CA	Existing	20	4470	0.00/			rresno nomes
									Director et al. 1990a	04	Existing	30	11%	33%	56%		
									Proctor et al. 1997a	ŊJ	New	52				13%	Est @ 67% combined charge/air flow correction benefits
									roonguez et al. 1995	n.a.	n.a,	n.a.				5%	Lab test of TXV EER; 5% loss at both 20% overchg & 20% undercho
									Rodriguez et al. 1995	n.a.	n.a.	n.a.				15%	Lab test of Orifice EER; 7% loss @20% overchg, 22% loss @ 20% underchg
									Average				28%	33%	41%	12%	

28% 33% 41% 12%

Why are these defects so common?

- Airflow is dependent on the components attached to the equipment (e.g., filter, ductwork).
- Refrigerant charge is dependent on, primarily, the length of the piping between the inside and outside equipment.
- Reasons that many installers don't account for these factors:
 - Poor or missing HVAC design
 - o Generally high turnover / inadequate training among installers
 - o Oftentimes, financial rewards for speed of installation, not quality installation
 - Not easy for installers or consumers to 'see' installation defects

What is ANSI / ACCA / RESNET Std 310?

- A new standard to assess the design and installation quality of HVAC systems.
- Inspired by code requirements already in place in California.
- Primarily for raters, who are not HVAC contractors, to use during home energy ratings.
- ~250,000 home energy ratings are done each year in the U.S., almost all for new construction. A subset of ~100,000 of these homes are also ENERGY STAR certified.

Std. 310: Standard for Grading the Installation of HVAC Systems

How will Std 310 help in residential new construction?

- Builders Energy ratings, tax credit, comfort, durability.
- Raters Valuable new service for any energy rated home.
- Utility Programs Energy and demand benefits.
- HVAC Manufacturers Rewarded for features that ease installation.

Could Std 310 help in the existing homes sector?

- While the Std 310 procedures are applicable to new systems installed in existing homes, one key roadblock is that Raters are not involved.
- However, Std 310 contains two alternative compliance frameworks that <u>might</u> be leveraged:
 - Independent Verification Reports
 - o On-board diagnostics

ENERGY STAR Residential New Construction Programs

Web & Email:

Single Family: www.energystar.gov/newhomesrequirements

Multifamily: <u>www.energystar.gov/mfnc</u>

Email: <u>energystarhomes@energystar.gov</u>

Dean Gamble

Technical Manager ENERGY STAR Certified Homes gamble.dean@epa.gov

Closing the Performance Feedback Loop

Christopher Dymond

Sr. Product Manager, Northwest Energy Efficiency Alliance ENERGYSTAR Partners Meeting - October 29th, 2020

CLASSIFICATION LEVEL: PUBLIC ©2020 Copyright NEEA.

~14 million residents 20 market transformation programs 15 Primary Funders Funded on a 5-year business cycle

Variable Capacity Heat Pumps

Time

- VCHP are the future
- Current metrics are inadequate
- Energy performance is low contractor priority
- New in-field data collection technologies

Possible Future – Feedback on Performance

Hypothesis: In-field performance data can benefit:

- 1. design & install practices
- 2. contractor call backs
- 3. service and performance

Market Barriers

- Unproven Technology
- Inaccurate Product Differentiation
- Poor Contractor Value

New connected controls make all 3 possible

Creating a Market Transformation Fulcrum

Roadmap Specification

Not a program requirement, but a directional guide forms a market fulcrum

6 Criteria

- 1. Performance Rating & Cap
- 2. Grid Response & Value
- 3. Automated Integration
- 4. Refrigerants
- 5. Design, Install, Monitoring
- 6. User Amenities

Objectives

- 1. Alignment of all stake holders
- 2. Identify what research is needed (gaps)

CRITERIA	TODAY	SOON	FUTURE
PERFORMANCE RATING & CAPACITY	 ENERGY STAR Certification (based on HSPF and SEER) Variable speed compressors and fans 	 Climate specific minimum SCOP ratings, ~ 10% more efficient than ENERGY STAR v6 Published Max and Min Capacity Values across full operating temperature range The matched control is ENERGY STAR certified 	 Climate specific minimum SCOP ratings ~ 20% more efficient than ENERGY STAR v6 Min capacity values are less than 1/4th max capacity values [at appropriate temperatures?]
GRID RESPONSE & VALUE	 AHRI 1380 capability Minimizes energy use during recovery (peak man value) 	 Ability to access 24hr ahead weather data to optimize comfort, performance and DR response Ability to read external RSS for utility DR condition information CTA 2045 port or equivalent 	 DR hardware automatically connects to utility DR system (user chooses level of DR responsiveness) Confirmation of demand response actions taken Integrated energy storage, allowing for load flexibility without consumer impact
AUTOMATED INTEGRATION	 Controls allows integration with other <u>htg/clg</u> system. Internet connection capability 	Automatic Control Integration	
REFRIGERANTS		 Refrigerant with GWP not greater than 750 Refrigerant leak detection 	 Refrigerant with GWP not greater than 150
SYSTEM DESIGN, INSTALLATION, MONITORING	 Design follows ACCA design manuals Installer has manufacturer certification of current product knowledge Confirmation of installation to utility 	 System provides data to support commissioning and baseline performance Data confirms system basic operational via Key Performance Indicators (KPIs) Ongoing data provides installers with alerts and diagnostic recommendation Baseline performance captured 	 System calculates real time COP and Capacity based on onboard sensors & input Complete integration of design tools with post installation verification data Ongoing data for performance monitoring
USER AMENITIES	 Capable of remote operation via connected devices Comfort and IAQ - TBD Geofencing? 	 System provides user with energy efficiency and demand response prioritization options Automatic ASHRAE 62.2 verification of system (for ducted systems) 	 CO and VOC sensors provide optimized performance

The Roadmap Focuses Our Research

- Hypothesis:
 - In-field performance data can improve design/install

- Questions:
 - Are savings real?
 - Will contractors welcome this?
 - What do utilities need in order to provide performance-based incentives?
 - What data structures/agreements need to be in place for this to work?
 - What is already available? What else is needed?
 - What is the path of least resistance?

Many Interrelated Overlapping Issues

Connected Commissioning and Control

- Validate benefits of remote diagnostics
 - Enhanced contractor value proposition
 - Utility verification and program QA
 - Increased energy and demand savings
- Evaluation of different approaches
- Both 3rd party and manufacturer products

Under Development Collaboration Welcome

Solution of the Willing

Goal

To increase research collaboration among energy efficiency organizations that are working to accelerate market adoption of advanced heat pumps.

Membership

- ACTIVE = Fund and Guide collaborative activities
- PASSIVE = attend webinars, provide feedback

Committees

- Steering Committee (NEEA, NEEP, MEEA, CEC, NRCan, EPA)
- WG #1 Improved Test Procedure and QPL
- WG #2 Roadmap Specification and Mfr Engagement
- WG #3 Best Practices (Design, Adaptation, Installation and Operation)

- Christopher Dymond
- <u>cdymond@neea.org</u>

neea

Residential HVAC Product Capabilities to Assess and Encourage Best Installation Practices

October 6, 2020

Dave Winningham

Lennox International Sr. Engineering Manager, Regulatory Affairs

Dave Winningham, Lennox International began his career in the HVAC industry in 1978 and has led teams in the design, development and manufacture all categories of Residential and Light Commercial HVAC products. Current role includes coordination of Federal and State Regulatory issues across Lennox's Residential, Commercial and Refrigeration business segments including active participation in the ENERGY STAR program.

Quality Installation

- All manufacturers spend significant time developing highly efficient products.
 - Today's minimum efficiency products use 23% 29% less energy than those produced prior to 2006 and will increase to 29% to 33% less energy when the 2023 DOE new standards become effective.
 - Current high efficiency product on the market can use over 60% less energy
- To ensure consumers attain these benefits proper installation is required

Quality Installation

- Steps toward and Efficient HVAC Installation
 - Load Calculation
 - Appropriate Capacity and System Selection
 - Duct Design

STANDARD NUMBER: ANSI/ACCA 5 QI-2015

HVAC Quality Installation Specification

Given these practices are followed what capabilities are available to ensure a HVAC system is installed properly?

Common HVAC System Installation Issues

- Mis-matched Equipment
- Voltage Supply
- Refrigerant Metering Device
- Refrigerant Charge
- > Airflow Setting
- Duct Static Pressure
- Furnace Gas Pressure
- Combustion Characteristics
- > Temperature Rise / Fall
- Changeover Setpoints

	CO ₂ % I	For Nat	CO ₂ %	For LPG
	Low Fire	High Fire	Low Fire	High Fire
045	5.4 - 6.4	7.5 - 8.5	6.4 - 7.4	8.8 - 9.8
070	5.3 - 6.3	7.4 - 8.4	6.3 - 7.3	8.7 - 9.7
090	5.8-6.8	7.6 - 8.6	6.8 - 7.8	8.9 - 9.9
110	6.1 - 7.1	8.0 - 9.0	7.1 - 8.1	9.3 - 10.3
135	6.1 - 7.1	7.8 - 8.8	7.1 - 8.2	9.1 - 10.1

Product Features that can improve installations

Auto Commissioning

- Identification of system components to ensure properly matched system
- Automated system settings to optimize performance

performan PROS omnission Comfo

Lennox iComfort[®] HVAC Control System

Product Features that can Improve Installations

Auto Commissioning

- Test functions with operational parameters
 - Voltage
 - Input Current/Power
 - Airflow
 - Static Pressure
 - Temperature Rise
 - Refrigerant Pressure
 - Refrigerant Temperature
 - Furnace Gas Pressure
 - Combustion Measurement

			Install	ation Report		Installation I
Overvi	ew				System ^{System}	
Dealer Information		Customer Informati	ion		name	Sys
Dealer Name Email	Crawford Services Inc http://www.lennoxdealer.com	First Name			model number	12X9800000
Phone	12142718800	Emai			serial number	V/L15E3001
Website	http://www.crawtord- services.com	Phone			software version	03.02.0
Country	US 999 Regal Row				Equipment Name	Subnet Contro
Address	Dallas, TX 75247-4402				Temp Reading Calibration	
					Humidity Reading Calibration	
System Information		Installation Date			Min Dehumidification Setpoint	4
Iome Name		Date	02/05/2016		Smooth Setback Recovery	Enal
Home Address		Time Outdoor Temperature	5:06 am 77 °F		Gas Heat Control Mode	Load Tracking Variable Capa
System Name		Indoor Temperature			Modulating Cas Meeting Steady State DI Cain	Edde Hacking Fanalise Cape
Thermostat Model Numb	ber iComfort S30	indoa manany			Modularing Gas riearing Steady State Pr Gain	Stand
	601020000				Modulating Gas heating Step Change PI Gain	Stand
					Modulating Gas Heating Cycles Per Hour	
Equipment					Cooling Mode	Com
Thermostat	Mod	Jel Number	CD15E00095	Firmware 3.1.178	Comfort Cooling - Minimum Stage Runtime	180
System	12X	8000000000	WL15E3001600	03.02.0393	Modulating Cooling Steady State PI Gain	Stan
Air Conditioner	XC2	1-060-230-11	5814M01980	2.6	Modulating Cooling Step Change PI Gain	Stan
Furnace	SLP98L	JH090XV60C-06	5914B18956	1.31	Modulating Cooling Cycles Per Hour	
Zoning Controller (zon	e 1 to 4) 1	03916-01	CC15D00521	01.00.0179	Temperature Control Mode	Com
					Well Insulation	

< 😕 equipn

High Normal Cooling Airflow

Installation Reporting with operational parameter flags

Product Features that can Improve Installations

- Post installation ongoing benefits
 - Performance Reporting
 - Maintenance Notification
 - Diagnostic Tools
 - Service Notification
 - Prognostic Tools

- While technology can be applied to individual system components most successful when System is Communication enabled
 - External Communication
 - Internal System Communication

Product Features that can improve Installation

- > HVAC Product Characteristics
 - The majority of HVAC products sold today are binary devices with limited system communication capability
 - High Efficiency products on the market are enabled with communication capabilities
 - Variable capacity products that require intelligent control systems to operate lend themselves to incorporate these features cost effectively
 - Technology can be applied to the spectrum of HVAC product from single stage to fully variable systems Communicating Systems

iComfort® Communicating Control

 Advanced control communicates information about various operating parameters in the air conditioner to the iComfort® Communicating Thermostats to constantly maintain the highest level of comfort, performance and efficiency available

 Auto Configuration - On start-up the control automatically sends a description of the unit to the iComfort® Communicating Thermostat to automatically configure the features available

Communicating Thermostat = A Communicating System

Product Features that can improve Installation

- Inhibitors
 - Increased Cost
 - Consumer Value Proposition
 - Low Volume

Sensor Cost \$\$

Multiple Sensors

- Measures to improve
 - Industry migration toward smart system capabilities that enable
 - Collaboration to quantify benefits
 - Recognition for systems that provide these functions
 - Programs that encourage adoption

Technology Enablers

Appliances

Component/Sensing Technology + Communication = Smarter Systems Improved Installed Performance

Geo-Fence

Lennox iComfort S30 Thermostat

- Works with Lennox communicating equipment to provide precision comfort *
- > 7" HD touch display with HD video screensavers
- CEC Title 24 Demand Response compliant
- Simple 4 wire installation
- > Ultra Smart thermostat with Schedule IQ that does the programming for you
- Dealer Commissioning app for quick easy installation
- Installation reports
- Performance reports and emails
- > Dealer Dashboard allows for remote monitoring, remote debug and diagnostic with homeowner consent
- > Smart alerts to your dealer when system is in need of maintenance or issue arises
- Smart Away" uses geo-fencing technology to adjust temperature while you are away
- > "Feels Like" temperature adjusts temperature and humidity levels for precise comfort
- > "Allergen Defender" filters the air in your home depending upon air quality levels in your area
- > Weather on demand
- > 7-day weather and allergen forecast display to always keep you informed
- Wireless Access for complete control anywhere you go
- > Wi-Fi remote monitoring and control via any smart device
- One-Touch Away Mode
- iHarmony zoning compatible
- Humidity control for enhanced comfort
- Voice control and Home Automation integration with popular systems

•The Ultimate Controller for precise comfort.

Contact Information

Dave Winningham Sr. Engineering Manager, Regulatory Affairs Lennox International <u>dave.Winningham@alliedair.com</u> 803-738-4085

