
HERS Points for HVAC Design & Installation: One Step Closer

2018 ENERGY STAR Certified Homes Stakeholder Meeting Michael Brown, ICF & Dean Gamble, EPA September 7th, 2018

Vacation!

Agenda

- Introduction
- Where Are We Now?
- Standard 310 Overview
- Potential HERS Impact
- Field Testing
- Questions

Introduction

Installation defects in HVAC systems are commonplace

- Improper airflow.
- Incorrect refrigerant charge.

Study Author	State	Existing or New Home?	Sample Size	Averag Airflow			Airflow w/in 109 of 400/to	6 Savin		85	1.18. Ili	
Blasnik et al. 1995a Blasnik et al. 1995b Blasnik et al. 1996 Hammarlund et al. 1992	NV CA AZ CA	Study A	luthor		State			Charge correct to mfg spec				
Hammarlund et al. 1992 Neme et al. 1997 Palani et al. 1992	CA MD n.a.	Blasnik	et al. 199; et al. 1995	5b	NV CA	New New	30 10	35%	5%	59%	17% 8%	Est @ 67% combined charge/air flow correction benefits Est @ 67% combined charge/air flow correction benefits
Parker et al. 1997 Proctor & Pernick 1992 Proctor 1991	FL CA CA	Farzad	et al. 1990 & O'Neal 1 & O'Neal 1	1993	AZ n.a. n.a.	New n.a. n.a.	22 n.a. n.a.	18%	4%	78%	21% 5%	Est @ 67% combined charge/air flow correction benefits Lab test of TXV; 8% loss @20% overchg; 2% loss @20% underchg
Proctor et al. 1995a Rodriguez et al. 1995	CA n.a.	Hamma	rlund et al	1992	CA CA	New	12 66	31%	61%	8%	17% 12% 12%	Lab test of Orifice; 13% loss @20% overchg; 21% loss @ 20% underchg Single family results Multi-family results
todriguez et al. 1995 EIC/PEG 1997	n.a. NJ	Katz 19 Proctor Proctor	& Pernick		CA CA CA	New Existing Existing	22 175 15	14% 44%	64% 33%	23% 23%		Charge measured in 22 systems in 13 homes Results from PG&E Model Energy Communities Program
verage		Proctor	et al. 1995 et al. 1997		CA	Existing New	30 52	44% 11%	33%	56%	13%	Fresno homes Est @ 67% combined charge/air flow correction benefits
			iez et al. 1 iez et al. 1		n.a. n.a.	n.a, n.a.	n.a. n.a.				5% 15%	Lab test of TXV EER; 5% loss at both 20% overchg & 20% underchg Lab test of Orifice EER; 7% loss @ 20% overchg, 22% loss @ 20% underch
		Average	9	:			<u>,</u> 1	28%	33%	41%	12%	

Installation defects in HVAC systems are commonplace

- Airflow is impacted by the installation:
 - Fan-speed setting
 - Components attached to the system (like the filter)
 - Duct system installed
- Refrigerant charge is impacted by the installation:
 - Length of refrigerant line
 - Change in height between indoor and outdoor sections

The RESNET Working Group

- ACCA initiated a proposal that RESNET include an evaluation of HVAC design and installation in the HERS index.
- EPA is leading a diverse working group to draft a standard that will accomplish this.

Jim Bergman, Measure Quick	Laurel Elam, RESNET	Brian Mount, Tempo Air
Tommy Blair, AE	Philip Fairey, FSEC	Dave Roberts, NREL
Michael Brown, ICF	Dean Gamble, EPA	Dennis Stroer, CalcsPlus
Greg Cobb, Inglenook Financial	Dan Granback, El	lain Walker, LBNL
Wes Davis, ACCA	James Jackson, Emerson	Dan Wildenhaus, TRC
Brett Dillon, IBS Advisors	Rob Minnick, Minnick's Inc.	Jon Winkler, NREL

Guiding Principles

- Take a 'carrot' rather than a 'stick' approach.
- Reward incremental improvement by HVAC professionals and Raters.
- Rely upon procedures that:
 - Can be performed by both HVAC professionals and Raters.
 - Favor consistency over breadth.
 - Provide value in and of themselves.

Grading Concept

- Follow the insulation quality-installation model:
 - <u>Grade III</u>: The default. No QI is done. No penalty and no credit.
 - <u>Grade II</u>: Rater reviews key design parameters for accuracy and takes accurate measurements of key installation parameters. The resulting values indicate that the system is not great, but not terrible.
 - <u>Grade I</u>: Rater duplicates the tasks in Grade II, but the resulting values indicate that the system is pretty top-notch.

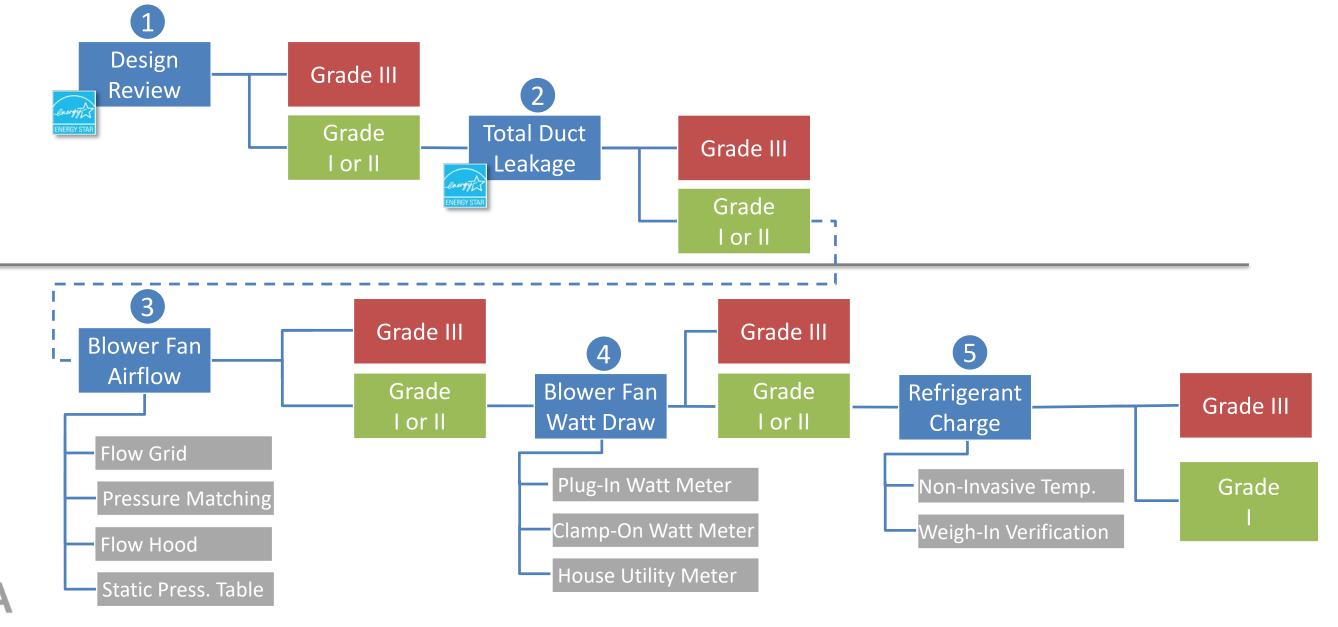
Where Are We Now?

Status Update

- Two major parts:
 - Standard 310: Standard for Grading the Installation of HVAC Systems
 - Brand new standard.
 - Covers all the things that the Rater will do.
 - Standard 301: Standard for the Calculation and Labeling..
 - Updated so that Standard 310 impacts the HERS index.

Status Update

- Working Group is currently reviewing a draft of Std. 310, hoping for approval soon.
- Then:
 - Finalize draft standard.
 - Go through public comment process and committee approvals. _____
 - Setting up implementation date.
 - Rater training.
 - Software updates.



Standard 310 Overview

Std. 310: Evaluating the Design

- ENERGY STAR Partners are already doing this!
- Step 1: Collect design information for the dwelling with the forced-air system under test.
 - Similar data to what's in the ENERGY STAR HVAC Design Report, though slightly expanded.
- Step 2: Rater reviews design information to verify all required information is documented.
- Step 3: Rater reviews key features to compare design information to the home to be rated.
 - Similar to ENERGY STAR Rater Design Review Checklist
 - Key features include design temperatures, conditioned floor area, window area and SHGC, etc.

Std. 310: Evaluating the Total Duct Leakage

- ENERGY STAR Partners are already doing this!
- Rater measures total duct leakage according to Std. 380, evaluates the results, and assigns a

grade:	Grade	Test Stage	# Returns	Total Leakage Limit
	I	Rough-In	< 3	4 CFM/100 sqft or 40 CFM
		Rough-In	≥ 3	6 CFM/100 sqft or 60 CFM
		Final	< 3	8 CFM/100 sqft or 80 CFM
		Final	≥ 3	12 CFM/100 sqft or 120 CFM
	II	Rough-In	< 3	6 CFM/100 sqft or 60 CFM
		Rough-In	≥ 3	8 CFM/100 sqft or 80 CFM
		Final	< 3	10 CFM/100 sqft or 100 CFM
		Final	≥ 3	14 CFM/100 sqft or 140 CFM
		N/A	N/A	No Limit

- Then, in the procedure to evaluate Blower Fan airflow:
 - Any test procedure can be used if Grade I duct leakage is achieved.
 - A subset of procedures can be used if Grade II duct leakage is achieved.
 - Airflow testing not permitted if Grade III duct leakage is achieved.

Std. 310: Evaluating the Blower Fan Volumetric Airflow

- 1. Pressure Matching
- 2. Flow Grid
- 3. Flow Hood
- 4. OEM Static Pressure Table

Std. 310: Evaluating the Blower Fan Volumetric Airflow #1. Pressure Matching

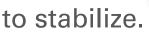
Pros	Cons
Accurate: +/- 3%	Can't reach high flows for big systems: needs extrapolation
Uses equipment many Raters already own	Need at least one large low air flow resistance return duct
	Requires hole in supply plenum

- Measure static pressure created in supply plenum during operation of HVAC system.
- 2. Turn off HVAC system, connect a fan-flowmeter, and block other return air flow paths.
- 3. Turn HVAC fan back on.
- 4. Turn on flowmeter fan and adjust to achieve same static pressure in supply plenum.
- 5. Determine HVAC airflow by recording airflow of flowmeter fan.

Std. 310: Evaluating the Blower Fan Volumetric Airflow #2. Flow Grid

Pros	Cons
Easy/simple for many systems	Multiple filters in single system are hard to deal with
Can work at higher flows	Need to make sure a good seal is achieved around the plate perimeter
	Slightly less accurate +/- 7%
	Requires hole in supply plenum

- Measure static pressure created in supply plenum during operation of HVAC system.
- 2. Install calibrated flow grid in filter slot.
- 3. Measure pressure difference using flow grid. Correct pressure using value measure in Step 1.
- 4. Determine HVAC airflow by converting corrected pressure to airflow.



Std. 310: Evaluating the Blower Fan Volumetric Airflow #3. Flow Hood

Pros	Cons
Accurate: +/- 3%	Can be heavy/unwieldy
Easy to use	Can be sensitive to placement
Does not require hole in supply plenum	Can be expensive
	Will not always fit around air inlet

- Turn on HVAC system. 1.
- Connect flow hood to return grille. 2.
- Turn on flow hood and allow reading to stabilize. 3.
- Resulting airflow of flow hood determines HVAC 4. airflow.
 - May require additional step to account for back-pressure.
 - For example, some manufacturers require you to test twice - once with a flap open and again with a flap closed.
 - While other manufacturers do this correction automatically without user intervention.

Std. 310: Evaluating the Blower Fan Volumetric Airflow #4. OEM Static Pressure Table

Pros	Cons
Requires only pressures to be measured	Rater required to get OEM Blower Table for installed equipment
Works for all flows	Needs carefully-placed hole in supply-side and return-side, sometimes in equipment housing
Inexpensive equipment	

- Turn on HVAC system. 1.
- 2. Measure external static pressure of system's supply side and return side.
- Determine fan-speed setting through visual 3. inspection.
- 4. Using blower table information, look up total external static pressure and fan-speed setting to determine airflow.

	_	External Static Pressure, (Inches Water Column)												
MOTOR SPEED	TONS AC ¹	0	.1	0	.2	0	.3	0	.4	0.	.5	0.6	0.7	0.8
SPEED	~~	CFM	RISE	CFM	RISE	CFM	RISE	CFM	RISE	CFM	RISE	CFM	CFM	CFM
High	3	1,498	N/A	1,446	N/A	1,368	N/A	1,302	N/A	1,227	N/A	1,145	1,059	954
Med	2.5	1,223	N/A	1,182	N/A	1,153	30	1,099	31	1,051	32	982	901	813
Med-Lo	2	983	35	971	35	945	36	919	37	878	39	813	746	659
Low	1.5	816	42	794	43	758	45	734	46	678	50	637	597	523

Std. 310: Evaluating the Blower Fan Watt Draw

- 1. Portable Watt Meter: Direct Measurement
- 2. Clamp-On Watt Meter: Direct Measurement
- 3. Utility Meter: Indirect Measurement

Std. 310: Evaluating the Blower Fan Watt Draw #1. Portable Watt Meter: Direct Measurement

Pros	Cons
Simple	Not usable with hard-wired equipment
Direct measurement of equipment (accurate)	

- 1. Plug in portable watt meter and blower fan equipment into standard electrical receptacle.
- Turn on equipment in required mode. 2.
- 3. Record reading from portable watt meter.

Std. 310: Evaluating the Blower Fan Watt Draw #2. Clamp-on: Direct Measurement

Pros	Cons
Useable with hardwired equipment that has service panel or service disconnect	Requires proper training and safety equipment
Direct measurement of equipment (accurate)	

- 1. Turn on equipment in required mode.
- Connect clamp-on watt meter to measure voltage and current at either the service disconnect or through a service panel (not at breaker panel).
- 3. Record reading from clamp-on watt meter.

Std. 310: Evaluating the Blower Fan Watt Draw #3. Utility Meter: Indirect Measurement

Pros	Cons
Works with all equipment	More steps required (turning off all other circuits)
No new equipment needed	

- 1. Turn off all circuits except air handler's.
- Turn on equipment in required mode.
 For a digital utility meter:
- 1. Record watt draw from utility meter.

For an analog utility meter:

- For 90+ seconds, record the number of meter revolutions and time.
- 2. Calculate watt draw.

Std. 310: Evaluating the Refrigerant Charge

- 1. Non-Invasive Test
- 2. Weigh-In Verification (only used for select equipment and conditions)

Std. 310: Evaluating the Refrigerant Charge #1. Non-Invasive Test

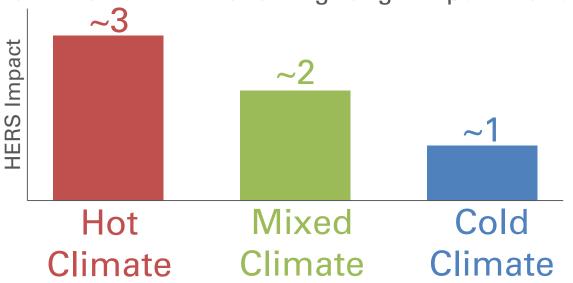
Pros	Cons
No refrigerant handling certification needed	New procedure to learn
No risk of refrigerant contamination and leaks	Minimum outdoor air temperature required
Less Rater liability	

- 1. Determine key equipment characteristics.
- 2. Measure outdoor air and return air temperatures.
- 3. Calculate target refrigerant line temperatures.
- 4. Measure refrigerant line temperature.
- 5. Compare.

Std. 310: Evaluating the Refrigerant Charge #2. Weigh-In Verification

Pros	Cons
No refrigerant handling certification needed	Requires information from contractor
Works at any outdoor temperature	Not a true performance test

- Contractor provides: 1.
 - 1. Weight of refrigerant added / removed
 - 2. Line length and diameter
 - Default line length from factory charge (usually 15 feet) 3.
 - 4. Factory supplied charge
 - Geotagged photo of scale with weight added / removed
- 2. Rater then:
 - 1. Measures line length and diameter
 - 2. Uses lookup table to determine how much refrigerant should have been added / removed
- Rater verifies the following: 3.
 - 1. Deviation between lookup and contractor value within tolerance
 - Location of geotagged photo matches "in the judgment of the 2. party conducting the evaluation" the location of the equipment


Potential HERS Impact

Potential HERS Impact Summary

- For homes where the HVAC design and installation is not assessed, score should be about the same as today.
- For homes where the HVAC design and installation is assessed, impact will be:
 - Dependent on climate
 - Dependent on how efficient the rest of the house is
 - Dependent on how well the system is designed and installed.
- Our goal and prediction is to have the following rough impacts for an ENERGY STAR home:

Field Testing

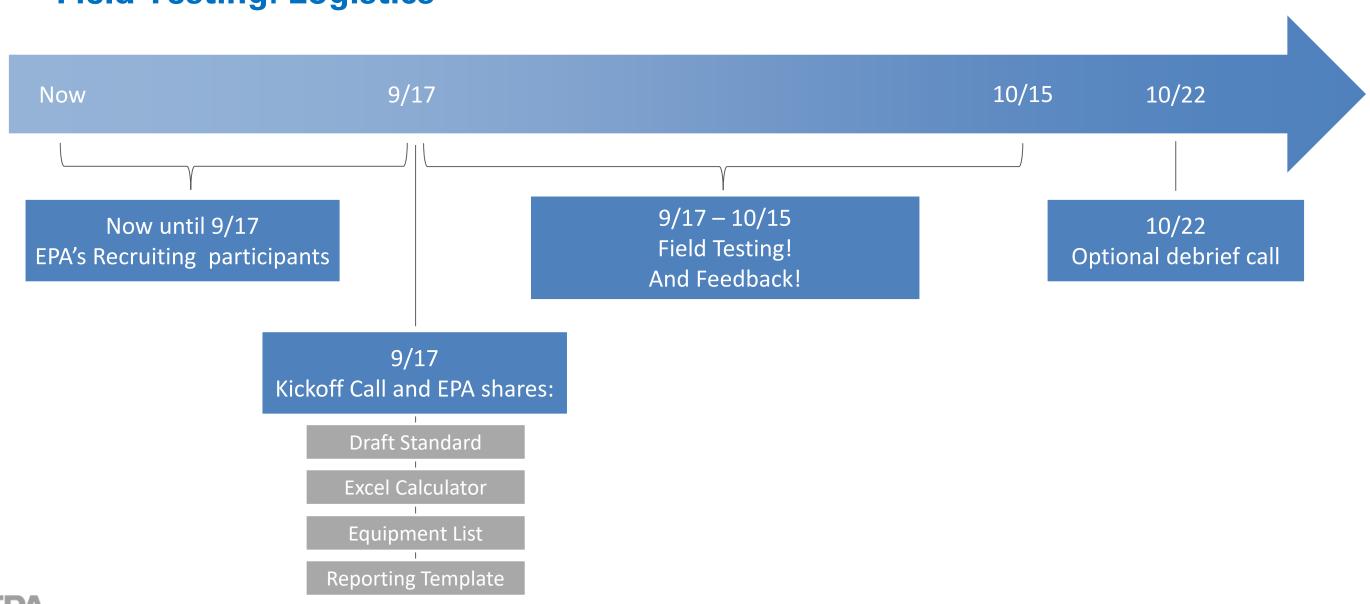
Field Testing

Field Testing: Purpose

- We're still fine-tuning Std 310, but we're far enough along today that we want your help.
- Get key Providers and Raters to road-test the procedures and provide feedback.
- Specific focus is on the new field tests.
- Looking to get feedback like:
 - Were there any obstacles or anything unclear in the procedures?
 - How long did it take to conduct each test?
 - Did different test procedures for the same parameter get similar results?

Field Testing: Prerequisites

- To get good feedback we're looking for Raters and Providers who are:
 - Ideally, generally familiar with HVAC system operation
 - Have, or willing to obtain, test equipment
 - Good relationship with HVAC contractor
 - Time and willingness to try out the standard!


Field Testing: Logistics

- EPA is recruiting key Raters and Providers starting today
- EPA will send:
 - Invitation to informal kickoff call/webinar
 - Handout with critical information
 - Draft standard
 - Excel calculator to guide tests and help with calculations
 - Reporting template for feedback
- Raters and Providers go out and kick the tires over 4 weeks and report back

Field Testing: Logistics

Questions?

